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Synchronized states in a ring of mutually coupled self-sustained electrical oscillators
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We investigate in this paper different states of synchronization in a ring of mutually coupled self-sustained
electrical oscillators. The good coupling parameters leading to complete and partial synchronization or disor-
dered states are calculated using the properties of the variational equations of stability. A stability map showing
domains of synchronization to an external excitation locally injected in the ring is also obtained. In both cases,
the numerical simulation validates and complements the results of the analytical investigation.
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I. INTRODUCTION

For many years, synchronization of coupled oscillat
has been investigated by the scientific community. The m
reason for this growing interest is that synchronization
frequent in nature and can help to explain many phenom
in biology, chemistry, physics, or has potential applicatio
in engineering and communication@1–7#. In the majority of
cases, two types of behaviors are of interest: chaotic
relaxation.

For the first type, complete synchronization of chao
oscillators has been described theoretically and observed
perimentally. Zhanget al. ~see Ref. @8# and references
therein! have studied partial synchronization and spatial
dering in Rössler oscillators. They have investigated the s
bility of different partially synchronous spatiotemporal stru
tures and some dynamical behaviors of these states
been discussed using numerical and analytical investigati
Recently, Chembo and Woafo@9,10# studied the spatiotem
poral dynamics of a ring of diffusely coupled single-we
Duffing oscillators with a positive nonlinear stiffness coef
cient. They used the Floquet theory to investigate vari
dynamical states of the ring as well as the Hopf bifurcatio
between them and applied the local injection method to
cover the chaotic dynamics.

For the second type, Somers and Kopell@11# showed that
a ring of identical relaxation oscillators, coupled locally in
manner that mimics fast excitatory synapes, can lead to
chronization within a couple of cycles. They also show
why relaxation oscillators can more robustly encode doma
of synchrony@12#.

Recently, Ookawara and Endo@13# have investigated the
effect of element value deviation on the degenerate mode
a ring of three and four coupled Van der Pol oscillators.
using the averaging method, they proved that for a ring
three coupled oscillators, two frequencies bifurcate from
degenerate mode, synchronize if they are close enough
lose synchronization when they are separated to some ex
while for a ring of four coupled oscillators, the two freque
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cies generally cannot be synchronized, even if they are c
enough.

The purpose of this paper is to consider the synchroni
states in a ring of mutually coupled self-sustained electr
oscillators described by coupled Van der Pol equations.
first analyze the stability of the synchronization of the ri
using analytical and numerical investigations. Then, we fi
the effects of the local injection strength on the behavior
the ring. After presenting the physical model in the next s
tion, we analyze in Sec. III the stability of the synchroniz
tion in the ring using the Floquet theory and Whittak
method. In Sec. IV, the influence of a local injection is foun
The last section is devoted to the conclusion.

II. MODEL AND STATEMENT OF THE PROBLEM

The model shown in Fig. 1 is a ring ofN identical mutu-
ally coupled self-excited electrical circuits described
coupled Van der Pol oscillators~see Fig. 2!. Each oscillator
consists of a nonlinear resistorNR, an inductorL, and a
condenserC, all connected in parallel. The coupling betwe
the N identical oscillators is realized here through an indu
tor Lc ~low-pass oscillators!, but can also be done with

FIG. 1. Ring of N mutually coupled self-sustained electric
oscillators.
©2004 The American Physical Society06-1



r-

el
de
tiv
d
a
l,

ee

e
on

he
at

rs
ra
th

rin

ta
o

ci
io

b

n
-

ra

n-

se
ns
.

e
e

cil-

e
all

le.

the
e

es
y a

e-
a-

d
f
n

nu-

ng
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capacitor~high-pass oscillators!. The volt-ampere characte
istic of the nonlinear resistor for thenth unit is expressed by
a symmetric cubic nonlinearity, which is illustrated by

i n52a1Vn1a3Vn
3, a1 ,a3.0; n51,2,...,N. ~1!

In this case, the model has the property to exhibit s
excited oscillations. This is due to the fact that the mo
incorporates through its nonlinear resistance a dissipa
mechanism to damp oscillations that grow too large an
source of energy to pump up those that become too sm
This form of nonlinearity was introduced by Van der Po
who considered a lumped oscillator with two degrees of fr
dom to discuss simultaneous multimode oscillations@14,15#.

As we have shown in the Appendix, the model is d
scribed by the following second-order nondimensional n
linear differential equations:

ẍ12m~12x1
2!ẋ11x15K~x222x11xN!,

ẍn2m~12xn
2!ẋn1xn5K~xn1122xn1xn21!,

] ] ] ] ]

ẍN2m~12xN
2 !ẋN1xN5K~x122xN1xN21!, ~2!

wheren52,...,N21 and the dot over a quantity denotes t
time derivative.xn stands for the amplitude of the voltage
the nth oscillator,m is a positive coefficient, andK is the
coupling parameter. The equations of motion~2! are a set of
N identical coupled Van der Pol or self-sustained oscillato

Equations~2! are interesting because they model seve
phenomena and have applications in many areas. In
channel, this model is mainly used in electronics enginee
as a network of parallel microwave oscillators@16,17#. Such
a network allows us to investigate the possibility of simul
neous multimode oscillations and accordingly the stability
several nonresonant modes of oscillations under spe
boundary conditions~two modes are nonresonant if the rat
of their frequencies is an irrational number! @18#. In biology,
the network of a large number of these oscillators can
used to model intestinal signal@19# or colorectal myoelectri-
cal activity in humans@20#. Moreover, the central patter
generator~CPG! that controls the rhythmic activity in inver
tebrates can be modeled by the same system@21#. It can also
be used to investigate the stability of both nondegene
modes ~standing waves! and degenerate modes~traveling

FIG. 2. A self-sustained electrical oscillator.
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waves!, and in particular the existence of an irregular dege
erate mode that appears when the numberN of oscillators is
a multiple of 4@22#.

III. SYNCHRONIZATION ANALYSIS IN THE RING

A. Analytical treatment

A particular property of the Van der Pol oscillator who
final state is a sinusoidal limit cycle or relaxation oscillatio
@14,15# is the sensibility of its phase to initial conditions
Consequently, ifN identical Van der Pol oscillators ar
launched with different initial conditions, they will circulat
on the same limit cycle but withN different phases. The aim
of the synchronization is therefore to phase-lock those os
lators ~phase synchronization!. When the oscillators are
coupled as in Eqs.~2!, the resulting dynamical state of th
system is interesting when it is stable. This requires that
the perturbed trajectories return to the original limit cyc
But for the sake of exemplification, we setN to 4. Thus, the
stability of the dynamical state can be studied through
linearization of Eqs.~2! around the unperturbed limit cycl
~or orbit! xo according to

j̈12m~12xo
2!j̇11~112K12mxoẋo!j15K~j21j4!,

j̈22m~12xo
2!j̇21~112K12mxoẋo!j25K~j11j3!,

j̈32m~12xo
2!j̇31~112K12mxoẋo!j35K~j21j4!,

j̈42m~12xo
2!j̇41~112K12mxoẋo!j45K~j11j3!,

~3!

wherejn stands for the perturbation term. For small valu
of m, the behavior of one oscillator can be described b
pure sinusoidal trajectory of the form

xo5A cos~vt2w!, ~4!

whereA andv are, respectively, the amplitude and the fr
quency of the unperturbed limit cycle in the first approxim
tion. The values ofA and v are A52.00 andv50.999 for
m50.10 ~obtained, for instance, by the averaging metho!.
As reported in Ref.@23# dealing with the synchronization o
two Van der Pol oscillators, this first-order approximatio
gives fairly good agreement between the analytical and
merical results. If we introduce the rescalingt5vt2w and
the following diagonal variables~or Fourier modes! r i as

r15j11j21j31j4 ,

r25j42j25x42x2 ,

r35j32j15x32x1 ,

r45j42j31j22j15x42x31x22x1 , ~5!

we get, after some algebraic manipulation, the followi
variational equations:

r̈ i1@2l1F~t!#ṙ i1Gi~t!r i50, i 51,2,3,4, ~6!
6-2
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with

l52
m

2v S 12
A2

2 D ,

F~t!5
mA2

2v
cos 2t,

G1~t!5
1

v2 ~12mA2v sin 2t!,

G2~t!5G3~t!5
1

v2 ~112K2mA2v sin 2t!,

G4~t!5
1

v2 ~114K2mA2v sin 2t!.

From the expression ofG2(t) and G3(t), we find that if
KP] 2`,20.50@ , r2 andr3 will grow indefinitely, leading
to the instability, in the ring. The same phenomenon a
occurs for r4 from the expression ofG4(t) when K
P] 2`,20.25@ ~#a,b@ means the internal froma to b but
with a andb excluded!. Taking the union of the two domains
this means that any perturbed trajectory in the region oK
P] 2`,20.25@ leads the oscillators to continuously dri
away from their original limit cycles because the restori
force turns out to be repelling and the cycle loses its attr
tion character of the disturbed trajectory.

To discuss further the stability of the synchronization p
cess, let us rewrite Eqs.~6! in a standard form. For this
objective, we use the transformation

r i5ni exp~2lt!expS 2
1

2 E F~t8!dt8D ~7!

and obtain thath i satisfies the following set of independe
Hill equations@24,25#:

n̈i1~a0i12a1s sin 2t12a1c cos 2t12a2c cos 4t!ni50,

i 51,2,3,4, ~8!

where

a015
1

v2 F12
m2

4 S 12
A2

2 D 2

2m2
A4

32G ,
a025a035

1

v2 F112K2
m2

4 S 12
A2

2 D 2

2m2
A4

32G ,
a045

1

v2 F114K2
m2

4 S 12
A2

2 D 2

2m2
A4

32G ,
a1s52

mA2

4v
,

a1c5
m2

8v2 S 12
A2

2 DA2,
04620
o
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a2c52
m2A4

64v2 .

From Eq.~8!, the stability boundaries of the synchronizatio
are to be found around the two main parametric resonan
defined ata05n2 (n51,2). Floquet theory@24,25# states
that h i may decay to zero or grow to infinity, and therefo
decide the behavior of the independent Fourier modesr i
@23,26#. Consequently, the stability of eachr i depends on the
coupling coefficientK and we need to determine the range
K for the synchronization process to be achieved. There
we use the Whittaker method@24# to discuss the unstabl
solutions. Thus we assume that at thenth unstable region,
each solution of Eqs.~8! has the form

h i5ea it sin~nt2s!, ~9!

with a i being the characteristic exponents ands a parameter.
Substituting Eqs.~9! into Eqs.~8! and equating the coeffi
cient of cosnt and sinnt separately to zero, we find that th
characteristic exponents have the following expressions:

a i
252~a0i1n2!1A4n2a0i1an

2, ~10!

with an
25ans

2 1anc
2 . The synchronization process is stab

when the Fourier modesr i go to zero with increasing time
so that the real part of2l6a i should be negative. Sincel is
real and positive, the stability condition is reduced tol2

.a i
2. Consequently, from the relations~7!, the synchroniza-

tion process is stable under the conditions

Hi
n5~a0i2n2!212~a0i1n2!l21l42an

2.0, n51,2.
~11!

We note that in the second main parametric resonance~i.e.,
for n52), the conditions~11! are satisfied for all value ofi.
Thus the stability is analyzed in the first main paramet
resonance~i.e., for n51) andHi

1 helps us to determine th
synchronization domain and the stability boundaries. We
now analyze throughHi

1 what happens in the ring when th
coupling strengthK increases from20.25 to infinity. It
should be noticed thatH1

1 does not depend on the couplin
strength. WhenK50, the system is uncoupled and the Fo
rier modesr2 , r3 , and r4 degenerate intor1 , which is
stable~since it remains bounded ast tends to infinity!. Then,
the model belongs to the stability area. AsK increases, our
investigation shows that bothH2

1 andH3
1 are positive forK

P] 20.25;20.0011]ø@0.004;1`@ while H4
1 is positive for

the range defined asKP] 20.25;20.0006]ø@0.002;1`@ .
We can thus discern three domains as follows:

I 1a5] 20.25;20.0011]ø@0.004;1`@ ,

I 2a5] 20.0011;20.0006]ø@0.0020;0.004@ ,

I 3a5] 20.0006;0@ø#0;0.0020@ .

WhenKPI 1a , the three modesr2 , r3 , andr4 are together
in the stability domain and thus tend all to zero as the ti
6-3
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increases. Thus the ring is in the complete synchroniza
state where we have the constraint

x15x25x35x4 . ~12!

In this case, all four oscillators display the same dynam
~e.g., are phase-locked!.

For KPI 2a , only the fastest moder4 reaches the stability
domain and the ring satisfies the constraint

x42x31x22x1[0, ~13!

while we have

x1Þx3 ,

x2Þx4 ~14!

sincer2 andr3 remain in the unstable domain. This corr
sponds to what can be called a standard correlated
~SCS!.

For KPI 3a , the modesr2 , r3 , and r4 enter into the
instability domain. This means that the ring satisfies the
lowing constraint:

x1Þx3 ,

x2Þx4 , ~15!

and

x42x31x22x1Þ0. ~16!

In this case, there is no synchronization in the ring.

B. Results of the numerical simulation

We use the numerical simulation to check the validity a
complement the analytical results obtained from Eqs.~11!.
The numerical simulation uses the fourth-order Runge-Ku
algorithm with a time stepDt50.01 and the initial condi-
tions „x1(0);ẋ1(0)…5(1.0;1.0), „x2(0);ẋ2(0)…5(1.5;1.5),
„x3(0);ẋ3(0)…5(2.0;2.0), and„x4(0);ẋ4(0)…5(3.0;3.0).

Let us evaluate the final values ofr i and thus indicate
various areas ofK where synchronization is achieved. Th
ring is considered synchronized if eachr i vanishes with the
precision 1024. For a fixed value ofK in each areaI ja ( j
51,2,3), we have plotted the behavior ofrk (k52,3,4) ver-
sus the time in Fig. 3 to show how they look when there
synchronization, when there is no synchronization, and w
there is instability.

From the numerical simulation of Eq.~2!, complete syn-
chronization occurs for KPI 1n5@20.2363;
20.0017#ø@0.0037;1`@ . The system is in the SCS forK
PI 2n5] 20.0011;20.0009]ø@0.0029;0.0037@ . This is due
to the fact thatr450 while r2Þ0 andr3Þ0. For the region
of K defined asKPI 3n5] 20.0009;0@ø#0;0.0029@ , there is
no synchronization in the ring becauser2Þ0, r3Þ0, and
r4Þ0. Two clusters also come from this numerical analy
which do not appear from the analytical investigations. T
first one is defined forKP@20.25;20.2364#, where r2
5r350, r4Þ0 corresponding to the statex45x2 and x3
04620
n

s

te

l-

d

a

s
n

s
e FIG. 3. Temporal variation of the Fourier modesr i with m
50.10: ~a! K520.10, ~b! K520.0008,~c! K50.0010, and~d!
K520.26. r2 ~lines!, r3 ~line points!, andr4 ~dashed lines!.
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5x1 with x42x31x22x1Þ0. The second cluster is forK
P@20.0016;20.0011# sincer2Þ0 andr35r450. It corre-
sponds tox15x3 andx41x25x11x3 .

IV. INFLUENCE OF THE LOCAL INJECTION

As we have mentioned before, different dynamical sta
are observed in several identical coupled oscillators suc
clustering or complete synchronization. However, som
times, due to environmental constraints or because of its
tential application, the system can be coupled to an exte
independent oscillator or excitation. This is common
achieved through the local injection technique consisting o
unidirectional coupling between the external command os
lator and a fixed representative of the nonlinear coupled
tem @27#. This local injection scheme is sometimes ind
pensable for the description of undesirable parasite coupl
or external perturbations. For example, in the case wh
external perturbation is the noise, it plays a dual role if a
plied to a synchronized system. Depending on the syste
parameter, the noise can disrupt synchronization or produ
new ordered state whose coherence depends resonant
the noise intensity. For instance, there is an optimal value
noise intensity which produces maximally regular biperio
oscillations, and thus coherence resonance@28#. Local injec-
tion can also be willingly introduced to force the nonline
system to replicate the dynamics of the external master
cillator. For instance, in the chaotic oscillators, the local
jection method can enable us to recover a particular cha
orbit when the unidirectional command coupling is suitab
designed@9#.

When the local injection is taken into account, Eqs.~2!
become

ẍ12m~12x1
2!ẋ11x15K~x222x11x4!2G~x12xs!,
04620
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ẍ22m~12x2
2!ẋ21x25K~x322x21x1!,

ẍ32m~12x3
2!ẋ31x35K~x422x31x2!,

ẍ42m~12x4
2!ẋ41x45K~x122x41x3!, ~17!

wherexs represents the dynamics of the external oscilla
and also plays the role of the command signal, andG is the
local injection strength. Generally, the literature places e
phasis upon the control of the coupled system to the triv
equilibrium state (xs50). Even for this simple target, furthe
simplifications are often imposed for the analytical results
be derived. For example, to be sure that the first oscilla
can be pinned to the target statexs50, G should be directly
set to infinity. Throughout our study, we takexs as the peri-
odic solution of a Van der Pol equation. Then we have

ẍs2m~12xs
2!ẋs1xs50. ~18!

Let us rewrite the first-order perturbation equations~3! as
follows:

j̈12m~12xs
2!j̇11~112mxsẋs!j15K~j222j11j4!

2Gj1 ,

j̈22m~12xs
2!j̇21~112mxsẋs!j25K~j322j21j1!,

j̈32m~12xs
2!j̇31~112mxsẋs!j35K~j422j31j2!,

j̈42m~12xs
2!j̇41~112mxsẋs!j45K~j122j41j3!

~19!

with the deviationjn5xn2xs . Following the analysis of
Sec. III, Eqs.~19! may now be written under the form of
set of coupled Hill’s equations:
ḧ11~a0112a1s sin 2t12a1c cos 2t12a2c cos 4t!h15
1

v2 @K~h222h11h4!2Gh1#,

ḧ21~a0112a1s sin 2t12a1c cos 2t12a2c cos 4t!h25
1

v2 @K~h322h21h1!#,

ḧ31~a0112a1s sin 2t12a1c cos 2t12a2c cos 4t!h35
1

v2 @K~h422h31h2!#,

ḧ41~a0112a1s sin 2t12a1c cos 2t12a2c cos 4t!h45
1

v2 @K~h122h41h3!#, ~20!

where

jn5hn exp~2lt!expS 2
1

2 E F~t8!dt8D , n51,2,3,4.

Let us investigate the stability of the synchronization process in the ring. We assume that each solution of Eqs.~20! has the
expression

hn5CneSt sin~nt2s!, ~21!
6-5
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whereS is the characteristic exponent andCn are arbitrary constants. Substituting the solutionshn into Eqs.~20! and equating
the coefficients of sinnt and cosnt separately to zero gives us the following set of algebraic equations inCn :

@~S22n21d2anc!coss1~2nS2ans!sins#C12
K

v2 cossC22
K

v2 cossC450,

@~2nS1ans!coss2~S22n21d1anc!sins#C11
K

v2 sinsC21
K

v2 sinsC450,

2
K

v2 cossC11@~S22n21a022anc!coss1~2nS2ans!sins#C22
K

v2 cossC350,

K

v2 sinsC11@~2nS1ans!coss2~S22n21a021anc!sins#C21
K

v2 sinsC350,

2
K

v2 cossC21@~S22n21a022anc!coss1~2nS2ans!sins#C32
K

v2 cossC450,

K

v2 sinsC21@~2nS1ans!coss2~S22n21a021anc!sins#C31
K

v2 sinsC450,

2
K

v2 cossC12
K

v2 cossC31@~S22n21a022aac!coss1~2nS2ans!sins#C450,

K

v2 sinsC11
K

v2 sinsC31@~2nS1ans!coss2~S22n21a021anc!sins#C450. ~22!

Upon elimination ofC1 , C2 , C3 , C4 , ands in Eqs.~22!, we have

Dn~S![UD11 D12 D13 0 0 0 D17 0

D21 D22 0 D24 0 0 0 D28

D31 0 D33 D34 D35 0 0 0

0 D42 D43 D44 0 D46 0 0

0 0 D53 0 D55 D56 D57 0

0 0 0 D64 D65 D66 0 D68

D71 0 0 0 D75 0 D77 D78

0 D82 0 0 0 D86 D87 D88

U50, ~23!

with n51 or n52 and the parametersD lm ( l ,m51,2,3,4,5,6,7,8) are given by the following expressions:

D115S21Qn , D2252~S21Jn!, D335D555D775S21Yn ,

D445D665D8852~S21Cn!, D125D345D565D7852nS2ans ,

D215D435D655D8752nS1ans ,

D135D315D175D715D355D535D575D7552
K

v2 ,

D245D425D285D825D465D645D685D865
K

v2 ,
046206-6



SYNCHRONIZED STATES IN A RING OF MUTUALLY . . . PHYSICAL REVIEW E69, 046206 ~2004!
FIG. 4. Stability map.
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where

Qn5d2n22anc , Jn5d2n21anc ,

Yn5a022n22anc ,

Cn5a022n21anc , d5
2K1G

v2 1a01,

with n51 for D1(S) andn52 for D2(S) @see Eq.~23!#.
The characteristic exponentS is given by Eq.~23!, that is,

Dn(S)50. Since the stability condition is given byl22S2

.0 when assuming thatl.0, we have

Dn~l!50 ~24!

at the boundary of thenth unstable domain.
In the second main resonance,D2(l) is positive and does

not change its sign. Accordingly, the stability analysis
reduced once more around the first unstable reg
Thus, whenG50, our analytical investigation shows that th
synchronization process is stable for the range ofK defined
as ]20.25;20.001@ø#20.003;0@ø#0;0.0004@ø#0.0039;
1`@ , which is comparable with the intervalI 1a . Analyzing
the effects of the local injection strength on the stabil
boundary of the ring, we find two ranges asG varies.
The first range is defined as 0,G<1.5, where the stability
of the ring depends on the local injection streng
G. For example, whenG50.06, the synchronization proces
is achieved if KP] 20.25;20.0012@ø# 20.0011;
20.0006@ø#0.0039;1`@and becomes#20.25;20.0035@ø
#20.0011;20.0006@ø#0.0023;0.0040@ø@0.0110;1`@ when
G is 0.6. In the second range, i.e.,GP]1.5;1`@, we find
that the stability domain of the synchronization do
not change with the variation of the local injection streng
and is defined as KP] 20.25;20.0036@ø#20.0011;
20.0006@ø#0.0023;0.0040@ø#0.0133;1`@ . To confirm
04620
n.

the validity of our analytic investigation, we have solve
numerically Eqs.~17! with the fourth-order Runge-Kutta al
gorithm. Synchronization between two oscillatorsp and q
occurs with a criterion that the distance of the phase tra
tories be

dpq5uxp2xqu,h, ~25!

whereh51023 is the precision. Synchronization among a
the oscillators occurs if the total separation of all pairs
trajectories is smaller than an accuracy, namely

d5 (
pairs~pq!

dpq,h. ~26!

For higher accuracy~with a smallerh!, computational time
has been extended to 105. In Fig. 4, we show the stability
map by applying the numerical simulation of the equation
motion ~17! and the preceding analytical investigation. T
resulting synchronized states in the (K,G) plane are drawn
for a fixed value of the injection strengthG when the cou-
pling parameterK varies. The following results are observe

The map shows four different areas: (D1), (D2), (D3),
and (D4) ~see Fig. 4!. The intersection between both analy
cal and numerical instability areas corresponds to (D1),
while (D4) is the intersection between the analytical and
numerical stability areas. As for (D2), it shows the instabil-
ity domain that is not predicted analytically while (D3) is the
stability domain forecasted analytically but not numerical
As G increases, both analytical and numerical instability
eas become closer. For example, whenG50.06, the numeri-
cal simulation gives that the synchronization is unstable
KP@20.25;20.241#ø@20.003;0@ø#0;0.021# and be-
comes @20.004;0@ø#0;0.013# when G50.60. The exis-
tence of clusters in the numerical instability domain (D2)
should be noted since, to obtain complete synchronizat
all the clusters should be synchronized between them. T
phenomenon (r250) can be displayed, for example, whe
6-7
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P. WOAFO AND H. G. ENJIEU KADJI PHYSICAL REVIEW E69, 046206 ~2004!
G50.03 in the interval@20.25;20.239#. WhenG.1.44, the
map configuration remains unchanged. It is important to
mark that (D1) and (D4) are two regions where the agre
ment between analytical and numerical results is quite go

It is also clear throughout our analytic investigation th
in opposition to the case where the coupled system is stu
around the trivial equilibrium statexs50 and for which we
need to set directlyG to infinity to assure the synchroniza
tion, it is not necessary whenxsÞ0.

V. CONCLUSION

In this paper, we have studied the stability of the synch
nization in a ring of mutually coupled self-sustained oscil
tors with and without a local injection. The Whittake
method has permitted us to obtain the boundaries of the
chronization process when the local injection is not pres
When we take into account the local injection effect, t
same analytical method helps us to obtain a stability map
complete synchronization to the external excitation.

As noted in the Introduction, the model analyzed in th
paper is a representative of many systems. We think
following the preliminary results obtained here, a close
spection of the realistic models in the context of physi
biology, and electronics is still an interesting task. Inde
coming back to the electronic system shown in Fig. 1
should be stressed that whenK belongs toI 1n , all four mi-
crowave oscillators are phase-locked. Thus the wave si
emitted appears to be more powerful. The state wherex1
5x3 andx25x4 is also interesting since it corresponds to t
situation where two microwave oscillators are phase-loc
one after the other with possible implications in automat
engineering.
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APPENDIX

When theN electrical oscillators are interconnected, t
nth oscillator is described by the following equations:
r,

D

ce

.

Y
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at
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t

al

d
n

Vn2Vn115Lc

dIn

dt
, ~A1!

I n212I n5 i L1 i C1 i n5
1

L E Vndt2C
dVn

dt
2a1Vn1a3Vn

3.

~A2!

The first time derivative of Eq.~A2! leads us to

dIn21

dt
2

dIn

dt
5

1

L
Vn2C

d2Vn

dt2 2a1

dVn

dt
13a3Vn

2 dVn

dt
.

~A3!

Then using Eq.~A1!, we obtain that the voltage in the ca
pacitor of thenth oscillator obeys the equation

1

Lc
~Vn212Vn!2

1

Lc
~Vn2Vn11!

5
1

L
Vn1C

d2Vn

dt2 2a1S 123
a3

a1
Vn

2D dVn

dt
. ~A4!

This latter equation can be rewritten as follows:

d2Vn

dt2 2
a1

C S 123
a3

a1
Vn

2D dVn

dt
1

1

LC
Vn

5
1

LcC
~Vn2122Vn1Vn11!. ~A5!

The substitution of the quantities

we
25

1

LC
, t5wet, Vn5A a1

3a3
xn

gives the set of Eqs.~2! with

m5a1AL

C
, K5

L

Lc
.

n-

h.
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