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Synchronized states in a ring of mutually coupled self-sustained electrical oscillators
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We investigate in this paper different states of synchronization in a ring of mutually coupled self-sustained
electrical oscillators. The good coupling parameters leading to complete and partial synchronization or disor-
dered states are calculated using the properties of the variational equations of stability. A stability map showing
domains of synchronization to an external excitation locally injected in the ring is also obtained. In both cases,
the numerical simulation validates and complements the results of the analytical investigation.
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[. INTRODUCTION cies generally cannot be synchronized, even if they are close
enough.

For many years, synchronization of coupled oscillators The purpose of this paper is to consider the synchronized
has been investigated by the scientific community. The maistates in a ring of mutually coupled self-sustained electrical
reason for this growing interest is that synchronization isoscillators described by coupled Van der Pol equations. We
frequent in nature and can help to explain many phenomenist analyze the stability of the synchronization of the ring
in biology, chemistry, physics, or has potential applicationsusmg analytical and numerical investigations. Then, we find
in engineering and communicatign—7]. In the majority of the effects of the local injection strength on the behavior of

cases, two types of behaviors are of interest: chaotic anthe ring. After presenting the physical model in the next sec-
relaxation. tion, we analyze in Sec. lll the stability of the synchroniza-

For the first type, complete synchronization of chaotiction in the ring using the Floquet theory and Whittaker
oscillators has been described theoretically and observed efiethod. In Sec. IV, the influence of a local injection is found.
perimentally. Zhanget al. (see Ref.[8] and references The last section is devoted to the conclusion.
therein have studied partial synchronization and spatial or-
dg_ring in_R"(ssIer osc_iIIators. They have invgstigated the sta- || MODEL AND STATEMENT OF THE PROBLEM
bility of different partially synchronous spatiotemporal struc-
tures and some dynamical behaviors of these states have The model shown in Fig. 1 is a ring &f identical mutu-
been discussed using numerical and analytical investigationslly coupled self-excited electrical circuits described by
Recently, Chembo and Woaf®,10] studied the spatiotem- coupled Van der Pol oscillatofsee Fig. 2 Each oscillator
poral dynamics of a ring of diffusely coupled single-well consists of a nonlinear resisttéR, an inductorL, and a
Duffing oscillators with a positive nonlinear stiffness coeffi- condense€, all connected in parallel. The coupling between
cient. They used the Floquet theory to investigate varioushe N identical oscillators is realized here through an induc-
dynamical states of the ring as well as the Hopf bifurcationdor L. (low-pass oscillatops but can also be done with a
between them and applied the local injection method to re-
cover the chaotic dynamics.

For the second type, Somers and Kop&ll] showed that
a ring of identical relaxation oscillators, coupled locally in a
manner that mimics fast excitatory synapes, can lead to syn
chronization within a couple of cycles. They also showed
why relaxation oscillators can more robustly encode domains
of synchrony[12].

Recently, Ookawara and End®3] have investigated the
effect of element value deviation on the degenerate modes i1 |
a ring of three and four coupled Van der Pol oscillators. By %
using the averaging method, they proved that for a ring of
three coupled oscillators, two frequencies bifurcate from the
degenerate mode, synchronize if they are close enough, bt
lose synchronization when they are separated to some exten
while for a ring of four coupled oscillators, the two frequen-

FIG. 1. Ring of N mutually coupled self-sustained electrical
*Email address: pwoafo@uycdc.uninet.cm oscillators.
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waves, and in particular the existence of an irregular degen-
________________ erate mode that appears when the nuniber oscillators is
i Y ] a multiple of 4[22].

IIl. SYNCHRONIZATION ANALYSIS IN THE RING

............... A. Analytical treatment

e ST A particular property of the Van der Pol oscillator whose
final state is a sinusoidal limit cycle or relaxation oscillations
[14,15 is the sensibility of its phase to initial conditions.
Consequently, ifN identical Van der Pol oscillators are
launched with different initial conditions, they will circulate
on the same limit cycle but witN different phases. The aim
of the synchronization is therefore to phase-lock those oscil-
lators (phase synchronizatipn When the oscillators are
coupled as in Eqs(2), the resulting dynamical state of the
system is interesting when it is stable. This requires that all
In this case, the model has the property to exhibit selfthe perturbed trajectories return to the original limit cycle.
excited oscillations. This is due to the fact that the modelBuyt for the sake of exemplification, we s§tto 4. Thus, the
incorporates through its nonlinear resistance a dissipativetapility of the dynamical state can be studied through the

mechanism to damp oscillations that grow too large and inearization of Eqs(2) around the unperturbed limit cycle
source of energy to pump up those that become too smalfor orbit) x, according to

This form of nonlinearity was introduced by Van der Pol,
who considered a lumped oscillator with two degrees of free- 51—M(l—X§)§1+(1+2K+2MXoXo)§1= K(&+ &),
dom to discuss simultaneous multimode oscillatiphs,15.

As we have shown in the Appendix, the model is de- Eo— (1= X2) £yt (14 2K + 21X Xo) Ex=K (&1 + &3)
scribed by the following second-order nondimensional non- 2 0752 ofol2 Lossh
linear differential equations:

FIG. 2. A self-sustained electrical oscillator.

capacitor(high-pass oscillatojs The volt-ampere character-
istic of the nonlinear resistor for theh unit is expressed by
a symmetric cubic nonlinearity, which is illustrated by

i,,=—a1VV+a3V,3,, al,a3>0; V:1121---N- (1)

E3— m(1—x2) &g+ (142K +2uXoXo) E3= K (E2+ &),
. U2\ _ _ .
X pmxx b =KX= 2t ), Eam (1= XD Eat (1 2K + 2xok0) Ea= K (£1+ £5),

y 2 )
Xy~ /.L(l_XV)XV+ Xy= K(Xv+l_ 2XV+XV71)1

where ¢, stands for the perturbation term. For small values
of u, the behavior of one oscillator can be described by a
pure sinusoidal trajectory of the form

(= (L= xR XN+ Xy =KXy — 22X+ Xy-1),  (2) Xg=Acog wt— @), @)

wherev=2,...N—1 and the dot over a quantity denotes the WNereéA and » are, respectively, the amplitude and the fre-
time derivativex, stands for the amplitude of the voltage at 4Uency of the unperturbed limit cycle in the first approxima-

the 1th oscillator, « is a positive coefficient, an& is the  ton- The values oA and w are A=2.00 andw=0.999 for

coupling parameter. The equations of moti@are a set of #=0.10 (obtained, for instance, by the averaging meghod

N identical coupled Van der Pol or self-sustained oscillatorsAS reported in Ref|23] dealing with the synchronization of
Equations(2) are interesting because they model severafWo Van der Pol oscillators, this first-order approximation

phenomena and have applications in many areas. In th&Ves fairly good agreement between the.analytlcal and nu-

channel, this model is mainly used in electronics engineeringnerical results. If we introduce the rescaling wt—¢ and

as a network of parallel microwave oscillatgs$,17. Such  the following diagonal variablegor Fourier modesp; as

a network allows us to investigate the possibility of simulta-

neous multimode oscillations and accordingly the stability of p1=&it ot &t iy,
several nonresonant modes of oscillations under specific iy £y Xg— X
boundary conditiongtwo modes are nonresonant if the ratio P2~ 647 527 24 R

of their frequencies is an irrational nump¢t8]. In biology,

the network of a large number of these oscillators can be
used to model intestinal signgl9] or colorectal myoelectri- —e _ oty _
cal activity in humang20]. Moreover, the central pattern Pa=8am & L= X Xt XX, ©
generato(CPG that controls the rhythmic activity in inver- e get, after some algebraic manipulation, the following
tebrates can be modeled by the same sy$@&th It can also  variational equations:

be used to investigate the stability of both nondegenerate

modes (standing wavesand degenerate moddgaveling pit+[2N+F(7)]p;+Gi(1)p;=0, i=1234, (6

p3=&3— €17 X3—Xq,
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with w?A?
n A2 B2c= 64w’
) 2
20 2 From Eq.(8), the stability boundaries of the synchronization

) are to be found around the two main parametric resonances
F(r)= &cos o defined atag=n? (n=1,2). Floquet theory24,25 states
2w ' that »; may decay to zero or grow to infinity, and therefore
decide the behavior of the independent Fourier moges
1 5 [23,26. Consequently, the stability of eaphdepends on the
Ga(7)= 2(1-puA%wsin 27), coupling coefficienK and we need to determine the range of
K for the synchronization process to be achieved. Thereby,
we use the Whittaker methd®4] to discuss the unstable
Ga(7)=G3(7)= ?(1+2K—MA20) sin 27), solutions. Thus we assume that at thi#é unstable region,
each solution of Eqg8) has the form

l aiT o1
G4(T)=F(l+4K—,uA2wsin27-). ni=e%"sinnt—ao), (9)

] ] ) with «; being the characteristic exponents and parameter.
From the expression oB,(7) and G;(7), we find that if  gypstituting Eqs(9) into Egs.(8) and equating the coeffi-
Ke]—,-0.50, p, andps will grow indefinitely, leading  cjent of comr and simr separately to zero, we find that the
to the instability, in the ring. The same phenomenon alsqharacteristic exponents have the following expressions:
occurs for p, from the expression 0fG,(7) when K
€]—»,—0.25 (Ja,d means the internal froma to b but a?=—(ag+n?)+\4n’ay +a2, (10
with a andb excluded. Taking the union of the two domains,
this means that any perturbed trajectory in the regioiof with a?=a2.+a2.. The synchronization process is stable
€]—»,-0.29 leads the oscillators to continuously drift \yhen the Fourier modes; go to zero with increasing time,
away from their Original limit CyCIeS because the restoringso that the real part of N+ a; should be negative_ Sinoeis
force turns out to be repelling and the cycle loses its aftracrea| and positive, the stability condition is reduced

tion character of the disturbed trajectory. o > a?. Consequently, from the relatioiig), the synchroniza-
To discuss further the stability of the synchronization pro-4gn, process is stable under the conditions

cess, let us rewrite Eqg6) in a standard form. For this
objective, we use the transformation HP'=(ag —n?)2+2(ag +n)A2+\*~a2>0, n=1,2.
1 (11
pi=hi exp(—)w-)exp( B Ef F(r')dr ) (" \We note that in the second main parametric resonginee
for n=2), the conditiong11) are satisfied for all value af
and obtain thaty; satisfies the following set of independent Thus the stability is analyzed in the first main parametric
Hill equations[24,23): resonancei.e., forn=1) andH} helps us to determine the
synchronization domain and the stability boundaries. We can
now analyze througlhii1 what happens in the ring when the
i=1,2,3,4, (8) coupling strengthK increases from—0.25 to infinity. It
should be noticed th&tli does not depend on the coupling
where strength. WherK =0, the system is uncoupled and the Fou-
) - 4 rier modesp,, p3, and p, degenerate intgp,, which is
( A ) 21} stable(since it remains bounded asends to infinity. Then,
K32 the model belongs to the stability area. Ksincreases, our
investigation shows that botH andH3 are positive fork
% ( 1 AZ)Z ZAT €]—0.25;—0.0011)U[0.004;+ [ while H} is positive for

N+ (ap; + 245 Sin 27+ 28, COS 2r+ 2a,. oS 4r)n; =0,

the range defined ak €]—0.25;—0.0006]U[0.002;+ o[ .
We can thus discern three domains as follows:

== l1a=]—0.25;—0.0011)U[ 0.004:+ [,

| 5=]—0.0011:—0.0006]U[ 0.0020;0.00f,
4o’ | 3a=] —0.0006;FU]0:0.0020.

2 2
M 1— A A2 WhenK el,, the three modep,, p3, andp, are together
' in the stability domain and thus tend all to zero as the time
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increases. Thus the ring is in the complete synchronization ‘ T T T T
state where we have the constraint

X1=Xo=X3=X4. (12)

In this case, all four oscillators display the same dynamics
(e.g., are phase-lockged

ForK el,,, only the fastest mode, reaches the stability
domain and the ring satisfies the constraint

X4_X3+ X2_XlEO, (13)
while we have #r
[ 5 10 15 20 25 3‘0 35 40 45 50
X1¢X3, TIME
? )
Xp# X4 (14 /\
15
sincep, and p; remain in the unstable domain. This corre-
sponds to what can be called a standard correlated state ‘n
(SCs.
For Kels,, the modesp,, p3, and p, enter into the ost
instability domain. This means that the ring satisfies the fol-
lowing constraint: of
X]_?EXg, 05
Xo# Xg, (15 ;
0
and
2
Xa— X3+ X=X, #0. (16)

In this case, there is no synchronization in the ring.

B. Results of the numerical simulation
05

We use the numerical simulation to check the validity and
complement the analytical results obtained from Hds).

The numerical simulation uses the fourth-order Runge-Kutta
algorithm with a time step\t=0.01 and the initial condi-
tions (x;(0);%1(0))=(1.0;1.0), (X2(0);X(0))=(1.5;1.5),
(X3(0);%3(0))=(2.0;2.0), andx4(0);X4(0))=(3.0;3.0).

Let us evaluate the final values pf and thus indicate
various areas oK where synchronization is achieved. The w
ring is considered synchronized if eaghvanishes with the ]
precision 104. For a fixed value oK in each ared;, (j ]

=1,2,3), we have plotted the behaviormf (k=2,3,4) ver- wl
sus the time in Fig. 3 to show how they look when there is
synchronization, when there is no synchronization, and when st

there is instability.
From the numerical simulation of EQ), complete syn-

chronization occurs for Kel;,=[—0.2363; ol

—0.0017U[0.0037+[. The system is in the SCS fd¢
el,,=]—0.0011;-0.0009]U[0.0029;0.003[. This is due o-’\r

to the fact thap,=0 while p,#0 andp;# 0. For the region

of K defined aK € 13,=]—0.0009;¢ U]0;0.0029, there is B T T T S

TIME

no synchronization in the ring becaupe+0, p;#0, and
p4#0. Two clusters also come from this numerical analysis
which do not appear from the analytical investigations. The FIG. 3. Temporal variation of the Fourier modps with
first one is defined forlK e[ —0.25;—0.2364, where p, =0.10: (a) K=-0.10,(b) K=—0.0008,(c) K=0.0010, andd)
=p3=0, p,#0 corresponding to the state;=x, and x5 K=-0.26. p, (lines), ps (line pointy, andp, (dashed lines
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=X; with X4—X3+X,—x;#0. The second cluster is fdf Xo— (1= X3) X+ Xp=K (X3~ 2X,+ Xq),
e[—0.0016—-0.0011 sincep,#0 andpz=p,=0. It corre-
sponds tax; =Xz andXs+X,= X1+ X3. X3— (1= X3) X3+ X3=K(Xq— 2X3+X,),

IV. INFLUENCE OF THE LOCAL INJECTION X4~ (1= Xx2) X4+ X4 =K (X1 — 2X4+X3), 7

As we have mentioned before, different dynamical statesvhere x; represents the dynamics of the external oscillator
are observed in several identical coupled oscillators such asnd also plays the role of the command signal, Brid the
clustering or complete synchronization. However, someiocal injection strength. Generally, the literature places em-
times, due to environmental constraints or because of its p@hasis upon the control of the coupled system to the trivial
tential application, the system can be coupled to an externa@gquilibrium state ¥,=0). Even for this simple target, further
independent oscillator or excitation. This is commonly simplifications are often imposed for the analytical results to
achieved through the local injection technique consisting of &e derived. For example, to be sure that the first oscillator
unidirectional coupling between the external command oscilcan be pinned to the target statg=0, I" should be directly
lator and a fixed representative of the nonlinear coupled sysset to infinity. Throughout our study, we take as the peri-
tem [27]. This local injection scheme is sometimes indis- odic solution of a Van der Pol equation. Then we have
pensable for the description of undesirable parasite couplings
or external perturbations. For example, in the case where Ks— (1= Xx2)Xs+Xs=0. (18)
external perturbation is the noise, it plays a dual role if ap- ) i ) )
plied to a synchronized system. Depending on the system%et us rewrite the first-order perturbation equatid as
parameter, the noise can disrupt synchronization or producefg/lows:
new ordered state whose coherence depends resonantly on -, o0 .
the noise intensity. For instance, there is an optimal value of 617 m(1=X9) &1+ (1+2uXX) £ =K (6272611 &)
noise intensity which produces maximally regular biperiodic ~T¢&,
oscillations, and thus coherence resondr2@. Local injec-
tion can also be willingly introduced to force the nonlinear £y (1= X2) Ext (14 2uxKe) £,= K (E3— 28,7+ £7),
system to replicate the dynamics of the external master os-
cillator. For instance, in the chaotic oscillators, the local in- 3 _ W2y : _ _
jection method can enable us to recover a particular chaotic §37 w1 x) ot (14 2pxXg) 5= K (64 265+ &2),
S(rak;tgvalgggfhe unidirectional command coupling is suitably §4—,U«(1—X§)§4+(1+ZMXSXS)§4= K(&,— 284+ £3)

L . 19
When the local injection is taken into account, E(3. (19
become with the deviation¢,=x,—Xs. Following the analysis of
) o Sec. lll, Egs.(19) may now be written under the form of a
X1 = m(1=X7) X1+ X1 = K(X2 = 2%+ X4) = ['(X1 = Xs), set of coupled Hill's equations:
. 1
71+ (g1t 2815 SiN 27+ 2284 COS 27+ 2@, COS 47) n1=?[K( No— 2711t na) — T nq],
i} . 1
1o+ (891t 28415 Sin 27+ 2a4. COS 2r+ 2@, COS 4r) nzz;[K( 73— 22+ 71) ],
. 1
73+ (g1t 2a15Sin 27+ 228, COS 2r+ 2a,. COS 47) 7]3:?[K( na— 2713+ 12) ],
) 1
74+ (2p1+ 2215 SiN 27+ 2@, COS 27+ 2@, COS 47) 774=;2[K( m—27m4+7m3)], (20

where

1
&E,=n, exp(—)\r)exp( — Ef F(T’)dr’), v=1,2,3,4.

Let us investigate the stability of the synchronization process in the ring. We assume that each solution2®) [Bgs.the
expression

7,=C,e~sin(nt—o), (22
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whereSis the characteristic exponent a@d are arbitrary constants. Substituting the solutigpsnto Eqs.(20) and equating
the coefficients of sinT and cosr separately to zero gives us the following set of algebraic equatio@s, in

K K
[(S*—n?+ 6—a,.)coso+(2nS—a,g)sino]Cy— ?COSO'CZ— ?COS(TC4=O,
K K
[(2nS+ a,)coso— (S2— N2+ 6+ane)sino|Cy+ —38iN0Cyt —sin0Cy=0,
K ) K
- FCOSO'Cl-I- [(S?—n?+ag,—a,)coso+(2nS—a,s)sina]Cy— FCOSO‘C3= 0,
K . 2_ 2 ; K .
FSIncrcl-f—[(ZnS-i-ans)COSO'—(S —N“+ag,t+a,)sina]C, ?SIHO'C3:0,
K _ i K
- ?COSO'CZ-I-[(S —N°+ag9,— a,c)C0ST+(2nS—a,s)sinag|Cy— ZZCOSUC4=O,

K K
Fsin 0Cy+[(2nS+a,s)coso— (S?—n?+agy+a,g)sine|Ca+ Fsinon 0,

K K
— —€050C; ~ —5Cos0Cy+ [(S?—n?+ag,—a,)coso+(2nS—a,g)sina]C,=0,

K K
Fsin oCy+ FsinaCBJr [(2nS+a,5)coSo— (S?—N?+ag,+ a,)sina]C,=0. (22

Upon elimination ofC,, C,, C3, C,, ando in Egs.(22), we have

Ay Ap Az O 0 0 Ay O

Ay A 0 Ay O 0 0 A
Ag; 0 Azg Az Azgs O 0 0

0 Ap Ayz Ay 0 Ay O 0

M0 0 an 0 A Ag by 0 2
0 0 0 Ay Ags Ags 0 Agg
Az O 0 0 Az 0 Ay Ayp

0 Ag O 0 0 Agg Agy Agg

with n=1 orn=2 and the parameters,,, (I,m=1,2,3,4,5,6,7,8) are given by the following expressions:

A =S+0,, Ap=—(S+E,), Ayp=Ax=A,=S+Y,,
Ag=Aeg=Agg= —(SP+ W), App=Ag=Age=A7=2nS—a,,,

Ap1=Ayz=Ags=Ag7=2nS+ Ay,
K
A13=A31= A17= A71= Ags= Asz= Ag7= A75= — et

K
Aps= A o= Apg=Agy=Ase= Ags=Dgg= Asezyv

046206-6



SYNCHRONIZED STATES IN A RING OF MUTUALLY ... PHYSICAL REVIEW E69, 046206 (2004

Analytical and Numerical Analytical stability

instabilities domains (D1) domain (D3)

Numerical instability

Analytical and Numerical
domain (D2) i

ities domains (D4)

1.08 —1—
r
072
_025 0239 0031 0007 0001 00004 0 00004 | 0001 0.007 0031
FIG. 4. Stability map.
where the validity of our analytic investigation, we have solved
) _ ) numerically Eqs(17) with the fourth-order Runge-Kutta al-
O,=6—n"—a,,, E,=dé—n“+a,, gorithm. Synchronization between two oscillatgrsand q
5 occurs with a criterion that the distance of the phase trajec-
Yn=ap2—N"~ap, tories be
2K+T dpq=|Xp—Xq|<h, (25

V,=ag—n?+a,, 6=—3—+ap, , . o
oo ne w® ot whereh=10"2 is the precision. Synchronization among all
. the oscillators occurs if the total separation of all pairs of
with n=1 for A;(S) andn=2 for A,(S) [see Eq(23)]. trajectories is smaller than an accuracy, namely
The characteristic expone8is given by Eq(23), that is,

A,(S)=0. Since the stability condition is given by*— S?

>0 when assuming that>0, we have d=pa§pq) dpg<h. (26)
A (\)=0 (24) For higher accuracywith a smallerh), computational time
has been extended to %10in Fig. 4, we show the stability
at the boundary of thath unstable domain. map by applying the numerical simulation of the equation of

In the second main resonanag,(\) is positive and does motion (17) and the preceding analytical investigation. The
not change its sign. Accordingly, the stability analysis isresulting synchronized states in th,{") plane are drawn
reduced once more around the first unstable regionfor a fixed value of the injection strengih when the cou-
Thus, wherl’=0, our analytical investigation shows that the pling parameteK varies. The following results are observed.
synchronization process is stable for the rang& afefined The map shows four different areas:D), (D,), (Dy),
as ]-0.25;—0.001U]—0.003;q U]0;0.0004U]0.0039; and D,) (see Fig. 4 The intersection between both analyti-
+oo[, which is comparable with the intervh{,. Analyzing cal and numerical instability areas corresponds B, )(
the effects of the local injection strength on the stabilitywhile (D,) is the intersection between the analytical and the
boundary of the ring, we find two ranges &S varies. numerical stability areas. As folD(,), it shows the instabil-
The first range is defined as<d'=<1.5, where the stability ity domain that is not predicted analytically whilB§) is the
of the ring depends on the local injection strengthstability domain forecasted analytically but not numerically.
I'. For example, whet'=0.06, the synchronization process As I' increases, both analytical and numerical instability ar-
is  achieved if Ke]—-0.25-0.0012U]—-0.0011; eas become closer. For example, whien0.06, the numeri-
—0.0006 U ]0.0039+~[and becomds-0.25;—0.003%U cal simulation gives that the synchronization is unstable for
]-0.0011:-0.0006U]0.0023;0.0040U[0.0110:+[ when Ke[—0.25;—0.247]U[—0.003;QU]0;0.02] and be-

I' is 0.6. In the second range, i.d.,e]1.5;+[, we find comes[—0.004;GU]0;0.013 when I'=0.60. The exis-
that the stability domain of the synchronization doestence of clusters in the numerical instability domaiD,j

not change with the variation of the local injection strengthshould be noted since, to obtain complete synchronization,
and is defined asKe]—0.25-0.003¢U]—0.0011; all the clusters should be synchronized between them. This
—0.0006 U ]0.0023;0.0040U]0.0133+x=[. To confirm phenomenond,=0) can be displayed, for example, when
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I'=0.03 in the interval —0.25; —0.239. WhenI'>1.44, the dl,
map configuration remains unchanged. It is important to re- Vi=Vyn=Lleg (A1)
mark that O;) and ©,) are two regions where the agree-
ment between analytical and numerical results is quite good. 1 qv

It is also clear throughout our analytic investigation that, | . —| =i +i.+i :_f V,d7—C———a,;V,+asV3.
in opposition to the case where the coupled system is studied” ) L) dr ’ 5
around the trivial equilibrium state;=0 and for which we (A2)
need to set directly” to infinity to assure the synchroniza-

tion, it is not necessary when#0. The first time derivative of EqA2) leads us to

dl,_, dl, 1 d2v, dv, ,dv,
Tdr dr LV Cap g, P3Vigo

In this paper, we have studied the stability of the synchro- (A3)
nization in a ring of mutually coupled self-sustained oscilla-
tors with and without a local injection. The Whittaker Then using Eq(A1), we obtain that the voltage in the ca-
method has permitted us to obtain the boundaries of the syrmacitor of therth oscillator obeys the equation
chronization process when the local injection is not present.

V. CONCLUSION

When we take into account the local injection effect, the 1 1
same analytical method helps us to obtain a stability map for T Vo=V = (V= Vo)
complete synchronization to the external excitation. ¢ ¢
As noted in the Introduction, the model analyzed in this 1 v, az_,|dv,
paper is a representative of many systems. We think that =VvtCgz—a 1_3a_1VV i A9

following the preliminary results obtained here, a close in-

spection of the realistic models in the context of physics;this |atter equation can be rewritten as follows:
biology, and electronics is still an interesting task. Indeed,

coming back to the electronic system shown in Fig. 1, it d>v, a, as dv 1
should be stressed that wh&nbelongs tol,,,, all four mi- #— ol 1_33_1\/'2’ dTV + EVV

crowave oscillators are phase-locked. Thus the wave signal
emitted appears to be more powerful. The state whegre

= X5 andx, =X, is also interesting since it corresponds to the :R(VV‘l_ 2V, +V,i1). (A5)
situation where two microwave oscillators are phase-locked ¢

one after the other with possible implications in automatio

. . “I'he substitution of the guantities
engineering.
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gives the set of Eqg2) with

APPENDIX
When theN electrical oscillators are interconnected, the = E K= L
. . . . . Mm=ag ’ .
vth oscillator is described by the following equations: c Le
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